Extreme points in non-positive curvature
نویسندگان
چکیده
منابع مشابه
Martin Points on Open Manifolds of Non-positive Curvature
The Martin boundary of a Cartan-Hadamard manifold describes a fine geometric structure at infinity, which is a sub-space of positive harmonic functions. We describe conditions which ensure that some points of the sphere at infinity belong to the Martin boundary as well. In the case of the universal cover of a compact manifold with Ballmann rank one, we show that Martin points are generic and of...
متن کاملNon-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کاملOn the Number of Geodesic Segments Connecting Two Points on Manifolds of Non-positive Curvature
1. Introduction Let M be a compact manifold Riemannian manifold of dimension n ≥ 2, with a metric of sectional curvature bounded above by χ ≤ 0 (non-positive curvature). In this paper we prove that in the case of negative curvature (χ < 0) on such manifolds there exist pairs of points connected by at least 2n + 1 geometrically distinct geodesic segments (i.e. length minimizing). A class of poin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2016
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm8549-6-2016